
 Experimental Uncertainties (Errors) 

Sources of Experimental Uncertainties (Experimental Errors): 

 All measurements are subject to some uncertainty as a wide range of errors and 

inaccuracies can and do happen.  Measurements should be made with great care and with 

careful thought about what you are doing to reduce the possibility of error as much as possible.   

  There are three main sources of experimental uncertainties (experimental errors):  

1.  Limited accuracy of the measuring apparatus - e.g., the force sensors that we use in 

experiment M2 cannot determine applied force with a better accuracy than  ±0.05 N.   

2.  Limitations and simplifications of the experimental procedure - e.g., we commonly 

assume that there is no air friction if objects are not moving fast.  Strictly speaking, 

that friction is small but not equal to zero.   

3.  Uncontrolled changes to the environment.  For example:  small changes of the 

temperature and the humidity in the lab.   

 In this laboratory, we keep to a very simple form of error analysis, our purpose being more 

to raise your awareness of errors than to give you expertise in sophisticated methods for 

handling error analysis.  If you ever need more information on error analysis, please check 

the literature1-4.   

 Do not list your mistakes as experimental errors.  These mistakes should have already 

been detected and eliminated during the preparation of the lab report.  A calculator should not 

be listed as a source of experimental error.  You may always use more significant figures (c.f. 

the next section) during calculations to reduce round-off error.  In other words, you may 

always make all calculations with a better accuracy then you can do lab measurements.   

 

Absolute and Relative Errors:  

 In order to learn the meaning of certain terms, consider an experiment in which we use 

the ultrasonic motion sensor to measure the position x of an object.  The accuracy of the 

motion sensor has been specified by the manufacturer as ±1 mm.  The absolute error of our 
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measurements is thus ±1 mm.  Note that the absolute error carries the same unit as the 

measured quantity.   

 Suppose the value measured in our first trial was equal to 50.6 cm.  Then the relative 

error is equal to:  (1 mm)/(50.6 cm) = (0.1 cm)/(50.6 cm) ≈ 0.002.  The relative error is 

dimensionless.  It is often expressed in percentage, as:  100%* (0.1 cm)/(50.6 cm) ≈ 0.2%.   

 We may express the above result using either absolute error or relative error, as follows:   

  x = 50.6 ± 0.1 (cm)   (usually preferred)   or   x = 50.6 cm ± 0.2%    

 If we know the accepted value of the measured quantity (e.g., the temperature of melting 

point for water is equal to 0˚C or 273K), then we can calculate the percentage error as:   

  
Relative error =  

Experimental value -  Accepted value

Accepted value
 ´  100%  

When comparing experimental data with the theoretical values, then the relative error 

is given by a similar formula:   

Relative error =  
Experimental value -  Theoretical value

Theoretical value
 ´  100% 

 If we do not know the accepted value of the measured quantity, but the measurements 

have been repeated several times for the same conditions, one can use the spread of the results 

themselves to estimate the experimental error.   

 

Average Values and the Standard Deviation:  

 Consider the following six results of velocity measurements:  0.38, 0.38, 0.35, 0.44, 0.43, 

0.42 m/s.  The average  value of these six velocity measurements is equal to:  v = (0.38 + 0.38 

+ 0.35 + 0.44 + 0.43 + 0.42) / 6 = 0.40 m/s.  Next, one needs to calculate the deviations from 

the average velocity:  0.38 - 0.40 = 0.02 m/s; 0.38 - 0.40 = 0.02 m/s; 0.40 - 0.35 = 0.05 m/s; 

0.40 - 0.44 = -0.04 m/s; 0.40 - 0.43 = -0.03 m/s; 0.40 - 0.42 = -0.02 m/s.   

 The general formula for calculation of the average value xAV (sometimes also called mean 

value) is as follows:   

    xAV =
1

n
x1 + x2 + x3 + ...+ xn( )     

 where n is the number of repeated measurements (for this example n = 6).   
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 The values of the deviation from the average value are used to calculate the experimental 

error.  The quantity that is used to estimate these deviations is known as the sample standard 

deviation 𝒔𝒙 and is defined as:  

sx =
1

n -1
x1 - xAV( )2

+ x2 - xAV( )2
+ ...+ xn - xAV( )2[ ]   

 The standard deviation squared -     sx
2 is the sum of squares of deviations from the average 

value divided by (n - 1).  The number of degrees of freedom (n - 1) is the total number of 

measurements n minus one.  The subscript usually indicates the quantity that the standard 

deviation is calculated for, e.g., sv stands for the standard deviation of velocity measurements, 

whereas sa is the standard deviation for acceleration data.   

 For the previously discussed example of velocity measurements we have  n = 6   

sv =
1

6-1
(0.02 m/s)2 + (0.02 m/s)2 + (0.05 m/s)2 + (0.04 m/s)2 + (0.01 m/s)2 + (0.02 m/s)2[ ] =

=
1
5
×0.0062(m2/s2) = 0.0352 m/s @ 0.04  m/s

 

 We use the standard deviation as the best estimate of the experimental error.  The 

result of measurements and error analysis should be written as:   

 v = vAV ± sv = 0.40 ± 0.04 (m/s)   (do not forget to write the appropriate units!)  

 The general format for presenting experimental results with experimental error is given 

by one of the following expressions:   

“final result”  =  “average value”  ±  “standard deviation” ( units ) 

x = xAV ± sx units    or    x = xAV ± sx (units)    or    x = (xAV ± sx) units  

  Obviously, the average value and the standard deviation must have the same units.   

 
Random and Systematic Errors:   

  There is one important point we should make about using of the standard deviation 

formula as the estimate of experimental uncertainty (experimental error) in x.  We have 

assumed implicitly that there is no “bias” in our measurements.  In other words, the probability 

that a value of vi will be larger than the perfect value is the same as the probability that it will 

be smaller than the perfect value.  This is why the average (1) will provide a good estimate of 

the measured value.  Errors of this kind are called random errors since their sign (positive or 

negative) is random.  The random errors happen due to small factors that are beyond our 
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control (small amplitude building vibrations due to the car traffic outside, changes to the 

power line voltage, etc.), or the random nature of the experiment (e.g., a radioactive decay).   

  There is also a second kind of error known as systematic errors.  Systematic errors are 

instrumental or methodological errors causing consistent deviation of results in one direction 

from the true value.  One very typical example of measurement with large systematic error is 

a scale that was not properly zeroed.  That scale would show values that are systematically 

smaller (or systematically larger) value than the true weight of objects.   

  Another example is if the temperature in the room (and consequently the speed of sound) 

would be significantly lower than the usual 20˚C (= 68˚F).  Computer needs the exact value 

of sound speed to properly calculate distance:  x = ∆t*vsound.  It would then provide values of 
xi, which always tend to be larger than x perfect, and the average of these xi values could differ 

from x perfect by much more than sx.  The only way to cope with systematic errors is to carefully 

analyze the way your experiment works, to understand how it might be biased and by 

adjusting equipment.  The graphs below illustrate both random and systematic errors.   

 Very close agreement between 
trials, but systematically off the 
target.  

Widespread, random 
variation of results.   

Small random error, but large 
systematic error.  

Large random error and 
significant systematic error.  

The best situation, i.e., small 
random error and small 
systematic error.  

 

 It is possible to reduce the systematic error by properly designing the experiment and 

adjusting experimental apparatus (for example, zeroing scales).  The random error can be 

reduced by repeating measurements or by getting better equipment.  In case of multiple 

measurements, we use the average value to reduce the random error.  Standard deviation 

provides a good approximation of the random error.  However, no matter how good is our 

apparatus and no matter how many times we repeat measurements the random error cannot 

be completely eliminated.  A similar statement is also true for systematic error.  Even the 

most careful calibration would not completely eliminate the systematic error.  The total 

experimental error depends on the larger od the two types of errors - random or systematic.   
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Condition for Two Results to Agree:  

 Error estimates are necessary to be able to say whether the two independent measurements 

of the same thing agree within the stated errors or disagree.  For example, two students 

measured the melting point temperature of ice and obtain results of -0.3˚C and 0.8˚C.  Without 

an estimate of error, we cannot say whether these measurements agree.  Suppose the results 

had been stated with errors:  Tmelt  = -0.3 ± 1.0˚C  and  Tmelt  = 0.8 ± 1.0˚C.  Since the first 

result admits values between -1.3˚C and 0.7˚C and the second between -0.2˚C and 1.8˚C, there 

is an overlap (between -0.2˚C and 0.7˚C) and the results agree within experimental errors.   

0.8±1.0˚C

0˚C 1˚C 2˚C-1˚C-2˚C

overlap
-0.3±1.0˚C

 
 If one cannot find an overlap between the error bands, then the results do not agree with 

each other.   

 

Experimental Uncertainty (Experimental Error) for a Product of Two Measurements:  

 Sometimes it is necessary to combine two (or even more than two) measurements to get a 

needed result.  A good example is a determination of work done by pulling a cart on an incline 

that requires measuring the force and the distance independently.  Then the value of work can 

be calculated from a simple formula:  W = F ́ s = F ́ ∆x  (more precisely:  W = FAV ́ ∆xAV).   

 Then, the absolute error for work W is given by the following formula:  

   , 

where, sF and sx  are standard deviations of force and distance measurements.  FAV and ∆xAV 

represent average values of force and traveled distance, respectively.  It is quite common that 

one of the two measurements is more precise, i.e., has a much smaller standard deviation.  In 

the discussed case of work measurements, we usually know the traveled distance with a much 
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better accuracy, i.e., smaller experimental error, i.e., sx @ 0.  Therefore, we should be able to 

use the approximate formula:     

 The final result of work measurements should be written as:  

W = FAV ´ ∆xAV ± sW ( J ) = FAV ´ ∆xAV ± ∆xAV ´ sF (J)  

“work” = “average force” ´ ”average distance” ±  “average distance” ´ ”standard 

deviation of force” (in Joules) 

 Numerical example:   Distance traveled   x = |x1 - x2| = ∆xAV = 1.04 ( m )  

 Measured Force  F 
( N )  

Deviations from the average 
force:  ∆F = F - FAV ( N ) 

Squared deviations from the 
average force:  (∆F)2 ( N2 ) 

1 0.170 -0.007 4.9´10-5  

2 0.161 -0.016 25.6´10-5 

3 0.152 -0.025 62.5´10-5 

4 0.197 0.020 40.0´10-5 

5 0.204 0.027 72.9´10-5 

Average 0.177   

 Average force:  FAV  = 0.177 ( N )  

sF =
1

4
4.9´10-5 N 2 + 25.6 ´10-5 N 2 + 62.5 ´10-5 N 2 + 40.0 ´10-5 N 2 + 72.9 ´10-5 N 2( )  =  

 = 0.0227 N @  

Standard deviation of the force measurements:    sF = 0.023 ( N )  

Standard deviation of the work done: 

    

The final result of the work should be written as:  

 W = FAV *∆xAV  ± sW  ( J ) = 0.177 (N)* 1.04 (m) ± 0.024 (J) = 0.184 ± 0.024 (J)   
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Significant Figures 

 The numerical values of the experimental results must be written according to specific 

rules.  The number of significant figures that should be used in stating a result is inseparably 

connected with the accuracy with which the result is known.   

(1) The number of significant figures in the experimental uncertainty is limited to one or 

(when the experimental uncertainty is small, e.g.,  ± 0.15) to two significant figures.  You 

should not use more than two significant digits when stating the experimental uncertainty.  

(2) Now the best estimate (usually the average value) and its uncertainty (experimental error) 

must always have the same number of digits after the decimal point, even if the uncertainty 

does not contain the same number of significant figures as the best estimate.  If the 

uncertainty has a greater number of places after the decimal as compared to the best 

estimate, adding it to (or subtracting it from) the best estimate will leave the best estimate 

with a greater number of decimal places than your apparatus is capable of measuring. For 

example, 2.4 ± 0.16 implies that the result lies in the range 2.24 – 2.56.  But the apparatus 

can measure only up to a precision of one place after the decimal.  Hence the correct way 

to express the answer is 2.4 ± 0.2.   

 If the uncertainty has a smaller number of places after the decimal than the best 

estimate (could be because of the restriction of one or two significant figures), then your 

best estimate is rounded off appropriately.  This is because even if your apparatus has a 

higher resolution (i.e., it can display more places after the decimal), it does not have that 

accuracy (as proved by the error having a smaller number of places after the decimal).  

Therefore, 2.456 ± 0.12 should be written as 2.46 ± 0.12.   

 (3) The value of the experimental uncertainty and rules (1) and (2) determine the number of 

significant digits in the best estimate (usually the average value) of the measured value.   

(4) The number "zero" presents problems in significant figures.  Zeros before the first non-

zero number are not significant.  Zeros after numbers after the decimal place are 

significant.  Zeros before the decimal place may or may not be significant.   

  Each of the following numbers has four significant figures:  

    2.347       234.7     -0.2347   2.340      0.002347      -2.347*105     

  Each of the following numbers has three significant figures:  

    2.34       234     -0.234     0.00234      -2.34*105        2.34*10-4    

      2.30      -0.230     2.30*10-7    0.000230     2.03     2.30*104  
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  Each of the following numbers has two significant figures:   

       2.3*102       2.3        -0.23       0.0023       -2.3*105       2.3*10-4       

(5) Writing an integer number (e.g., 350 m) presents a problem, because it does not clearly 

define the number of significant figures (two significant figures or three?).  Use the 

scientific notation, such as 3.50*102 m, to indicate that three significant figures are known.   

6) Both measurements and experimental uncertainties must have the same units (always the 

case unless specified as relative error that is always dimensionless and usually written as 

a percentage).  Please, compare the following examples:   

Correct:  Wrong:  

0.2 ± 0.3 0.20 ± 0.321 

0 ± 2 0.05 ± 2.5 

3.14 ± 0.01 3.14 ± 0.002 

3.142 ± 0.002 3.14213 ± 0.002 

3.14 ± 0.02 3.142133 ± 0.023523 

(2.34 ± 0.15)*10-4 (2.34 ± 0.152)*10-4 

7.2*102 (two digits) 720 ( ? ) 

7.20*102 (three digits) 720 ( ? ) 

(7) Do not mix notations - that is, do not write a measured value in scientific notation and its 

error as a decimal or vice versa.   

(8) When multiplying or dividing measurement figures, the final answer may not have more 

significant figures than the least number of significant figures in the figures being 

multiplied or divided.  This simply means that an answer cannot be more accurate than 

the least accurate measurement entering calculation, and that you cannot improve the 

accuracy of a measurement by doing a calculation (even if you have a 10-digit, scientific 

calculator).  To minimize rounding errors, you should use more significant figures 

during calculations and adjust the significant figures only for the final results.   

 Examples:  3.5 * 22.3 = 78 not  78.05,  6.2 / 833 = 0.0074  not  0.007442977   

 Adding or subtracting:  42.4 - 41.62 = 0.8,   4256 - 24.7 = 4231,   33.8 + 15.63 = 49.4   


